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I.    INTRODUCTION 

One of the fundamental problems in hypervelocity rarefied gasdynamics 

is a quantitative description of the transition between free molecule and con- 

tinuum flow.    The problem of providing such a description entails solving the 

Boltzmann transport equation subject to initial values and boundary conditions. 

This is.  indeed, a difficult problem,  and thus far analyses have predominantly 

dealt with simple linearized flows (Couette flow 1' 2 and Rayleigh's problem 3). 

Theoretical analysis of nonl near flows has.   in general, not proceeded 

as successfully as for the linear case.    The only nonlinear problem that has 

received exhaustive treatment is shock structure in a monatomic gas (an 

excellent review of this problem is given by Talbot4).    The work on shock 

structure has, for the most part,  followed the ideas of Mott-Smith5,  who 

considered the shock layer as the mixing zone for two Maxwellian streams. 

These ideas have been elaborated by various investigators 6-8 and have resulted 

in the postulation of a two-fluid model6 for the shock structure problem. 

The ar.alyses of more general nonlinear flows have been irfluenced,  to 

a large degree, by the theoretical models employed in the shock structure 

problem.    Although these models are based on sound physical ideas and give 

reasonable results for the shock structure problem,  in their application to 

more complicated flows one encounters serious difficulties. 

Lees    has, for example,   suggested a generalization of the Mott-Smith 

bimodal representation of the distribution function.    This approach, although 

successful for compressible Couette flow,  results in a set of intractable 

differential equations for such flows of interest as the shock structure 

problem.      Several investigators. 10'   11 have also proposed variations of the 

multifluid.   shock structure models for use in more general nonlinear,  rarefied 

flows.    Although a multifluid theorv is intuitively appealing for the nonlinear 

regime, the investigations to date do not present a consistent formulation nor 

are they applied to a really representative problem.    The model proposed by 

Rott and Whittenbury 10 assumes two fluids, a hyperthermal,   "freestream" 

fluid and a "scattered fluid. "   In the model, the -freestream- fluid can be 
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conveniently represented as a molecular beam; however, the assumption 

that the "scattered" fluid is representable by a Maxwellian distribution 

function is,  as pointed out by the authors,  quite arbitrary.    Lubonski'« 

model,       on the other hand, divides the gas into three classes   >{ particles: 

"freestream, " "reflected from the boundary, " and "scattered. "   Although 

such a classification is sensible,  Ref.   1! contains little discussion on how 

one handles each fluid, and in fact the treatment of hypervelocity Couette 

flow that is given restricts considerations to the near free molecular flow 

regime.    To summarize, one can state that although the application of the 

ideas used in the study of wave structure to more general problems is 

certainly worthwhile,  there is as yet no satisfactory extension of these ideas. 

In this work a new, two-fluid model for the hypervelocity rarefied 

regime is presented.    This work avoids many of the shortcomings of the 

previous multifluid models and results in a set of partial differential moment 

equations that are of the same order of difficulty as the conventional gas 

dynamic equations.    Although the model does not provide a description of the 

entire transition between the free-molecule and continuum regimes,  it does 

yield acceptable results into the transition regime, the consistency of the 

simplifying assumptions being ascertainable from the numerical results. 
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II.    MOMENT METHOD 

The a priori separation of particles into "cold" and "wall" fluids in 

Figure 1 provides a framework for the development of a moment method for 

the rarefied hypervelocity regime.    In examining the dynamics of the "cold" 

fluid, we note that far from the body the "cold" fluid is made up of hyper- 

velocity freestream particles.    As one approaches the body,  the "cold" fluid 

begins to be populated with scattered particles (resulting from "cold-wall" 

intermolecular collisions) and its pressure and temperature begin to increase, 

i.e. ,  it begins to thermalize.    Therefore,  in the hyperthermal regime we can 

expect that the moment equations for the cold fluid can be truncated 12 by 

neglecting the heat flux tensor compared to the other terms in the equation of 

motion for the stress tensor. 

To review the rationale for the "a prior      choice of fluids we note that 

a "wall" fluid,  encompassing those particles that are reflected from the sur- 

face and a "cold" fluid that includes all freestream and scattered particles are 

chosen.    It will be seen that one has a rather simple description of the "wall" 

fluid,   since it is the attenuation of the "wall" fluid density that is of most 

interest and not the details of the distribution function for these particles. 

However,  in describing the termalization of the "cold" fluid,  more detailed 

information is required because it is this thermalization that is most important 

in shock formation and in the dynamics of the transition regime.    We first out- 

line our treatment of the wall fluid. 

For the "wall" fluid,  it is expedient to adopt a much simpler descrip- 

tion than for the cold fluid.    This it because one is,  for the most part, 

interested only in the attenuation of the "wall" fluid density as a function of 

distance from the body.    The fluxes of energy and momentum to the body will 

generally be controlled by the "cold" fluid, and so one is mainly interested in 

the number density n2,  which interacts with the "cold" fluid through collisions. 

To this end we choose for  f. 
1 
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n2(r, t) 

(2ffkT   /m) w 
nr exp 

!2-0 

mv 
2kT 

w ) 

0 =   0 

n = o. 

(i) 

where  Ob  is the solid angle that the body subtends at the point r.    Because 

equation (1) is the free molecular distribution function for f  ,  with the density 

n2  an undetermined function of time and position,  equation (1) will reduce to 

the correct free-molecule solution in the limit of Knudsen number  ■• ■  .    The 

rationale for the choice of only one free variable in (1) is that,  for 

Vl   /(2kT
w
/m

1) 
>>   li   "cold-wall" collisions do not have a large effect on 

the form of the distribution function of the "wall" particles.    One therefore 

considers the main effect of "cold-wall" collisions to be the attenuation of the 

"wall" fluid density. 
12 

For the "cold fluid" Hamel        has ronsidered a truncation of the 

moment equations by neglect of the heat flux tensor.    The difficulty he 

encounters in the analysis of the one-dimensional piston problem is that the 

moment differential equations are hyperbolic so that a shock-like discontinuity 

tends to form in the "cold fluid".    He is therefore able to obtain results with 

the method which give the initial development of a shock-like structure in the 

"cold fluid".    This can be seen in Figure 2,  where we plot the "cold-fluid" 

density as a function of position for a piston Mach number of 10.    The main 

criticisms of the Hamel's model are that it fails to take account of the heat 

flux for the region of flow where significant thermalization has taken place 

and in addition it neglects self-collisions among scattered particles.    To 

overcome these difficulties here,  we propose a modification of the original 

model,  which has already proved successful in the kinetic theory analysis of 
13 expansions into vacuum 

To make our application of this new method clear we make the equations 

appropriate to the problem of one-dimensional hypersonic compression. 



The problem we consider here is that of a piston that is impulsively 

brought to hypersonic velocity at t = 0.    In the coordinate system of the 

piston, the gas molecules can be considered to have a hypersonic velocity 
2 

tVix   /(ZkT^/m) >> 1] ,  and the plate is stationary at  x = 0.    It is assumed 

that the plate has an accommodation coefficient of unity, all incident particles 

being reflected with a Maxwellian distribution at the plate temperatures.    It 

is further postulated that the molecular interaction is that of hard spheres. 
12 The form of the equations that Hamel      obi 

written,  with the following non-dimensionalization 

12 
The form of the equations that Hamel      obtains for this problem are 

n =    n.Ai IT =    n.      /mn   V ' 
1 1     ^ Ixx Ixx ao     or 

N2      =    N^n^M^ t' *    tCV.n^ffa2) (2) 

V/      =    Vj/V, x' =    x^iraV) 

The governing moment equations can then be written as follows: 

IT     — ni vi   = ni   2 '  > |n2    ~^~ ^ 

3V,' iV* »0.       , 
' ' '   tT        I * •  ^X 

•i TT^ + "> vi —> sir- -0 ,4, 

in     +   v/    12L    *   30,      ,    L =   ÜÜ    x (5) 
at' i       ax' lxx     ax'        ^ 

(0)     /M  ' lir   ' 3 
n2      nl  N2   1V1 

3N2 2       vjo)   aN2'        ^'^'v; 
+     TTT  -T3    T    ■ w  <6) at       T^rr " N'. 

where n2
0)   =   erfc [(x7t')Ma ]  and M^2   =   V * I(ZV.TJm). 



and equations (3-5) represents the equations of motion for the "cold-fluid" 

and equation (6) the equation of motion for the "wall" fluid.    We observe that 

the right hand sides of equations (3-b) represent collisions between "cold 

fluid" and "wall fluid" particles; so that in these equations collisions among 

scattered particles (e.g.   "cold-cold" collisions) are neglected.    To take 

account of these collisions we decompose the stress tensor of the cold fluid: 

Si ■ Pn Li + p^i - ii) tn 

so that we have a component of pressure along the streamlines,  p     , and a 

component of pressure normal to streamlines,  p    .    Far from the piston in 

the undisturbed free stream we have  p    =  p, ,   =   p    ;   collisions between cold 

and wall particles cause anisotropy in P so that   P»* r p     in the highly rarefied 

regime.    While in the collision-dominated regime   p   .   =   p   . 

To take account of tht heat flux we make an ad-hoc adjustment of the 

energy equation,  including a heat-flow term which follows the Fourier Law. 

With these adjustments our new set of moment equations will go over to the 

Navier-Stokes equations in the continuum limit,   give the correct free molecular 

limit and additionally give a result part way into the transition regime which 

will be self-consistent.    In the transition regime we can consider the adjusted 

set of moment equations as an interpolation between a continuum and highly 

rarefied treatment. 

We therefore rewrite equations (3-5) for the "cold-fluid" with the above 

adjustments: 

(9) 

dJtnn'             «   / 

at'          ^ x' v 

1       dt'             äx' 
=   0 

,,   ^11 vl - 
"   Z  V ' U 1/2 

(10) 
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d    /. ^l'l   +   <    + v 2'\ I    K   ST   ,2   ^nV 
dT' ^T^ + — + vi  / =   Vpf   ^rKi ax' at 

Oi) 

where  K     and H      are the thermal conductivity and viscosity of the gas and 

  = —gm +   V' --— .     We see that for short times compared to a self- 
dt ot -1    ox' 

collision time between "cold-fluid" particles the above equations reduce to a 

near-free molecular type description: 

din ni' » ic\\    * l^Z 

j_ x     *       V'   --   N ' IV 'I   n(0) I  (12) 
* ^T   Vl        ^2   '     1  '     2 2 dt 

dV äp' 

-; ^+ ^ =o (13) 

D        V 
At 11        1 ■> din   ,r 2 

nl 
"d^ 

3        I Vl ■ (0)    M   '     IV   3| 
-^XnTr + i"n2   N2 |vi ' 

(14) 

where in the right-hand sides of equations (12-14) we can substitute the free- 

molecular values.    These equations are completely equivalent to the older 
12 

model of Hamel      and give the near-free molecular description of the piston 

problem. 

On the other hand, for very large time compared to a eelf-collision 

time,   "wall" fluid collisions are negligible and the equations should give a 

steady shock.    The steady state limit of the above equations can be written as: 

nl
,Vl     =   A (15) 

»,  V, »   ♦  pn    -  B 

dx' n   ' n^ 

(16) 

P,',   -  Pi 07) 



3p ' 2p ' , K,     dT.' 
P"   + ^L + v '2   =   — -r^-   + C dB) 

^y^  + T^  +   Vl A       dx' 

It can be shown that these equations will yield a steady state shock and 

this solution is now being investigated.    So that the above model can be shown 

to have quite reasonable near-free molecular and continuum limits and at the 

same time give a set of equations for the transition regime that are not 

intractable. 

In the future we expect to investigate numerically the formation of a 

Shockwave utilizing the present work.    By simply adding an electron con- 

servation equation to the above set it may perhaps be possible to observe, 

theoretically the production of electrons during the formation of a Shockwave. 
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